1 Recurrence Relations

1.1 Concepts

1. In order to solve a linear homogeneous we can replace the equation with its characteristic polynomial. For instance, the characteristic polynomial of $a_{n}=2 a_{n-1}+a_{n-2}$ is $\lambda^{2}=$ $2 \lambda+1$. Then if $\lambda_{1}, \ldots, \lambda_{k}$ are roots of this polynomial, then the general form of the solution is $a_{n}=C_{1} \lambda_{1}^{n}+\cdots+C_{k} \lambda_{k}^{n}$.

1.2 Problems

2. True False If a_{n}, b_{n} are two solutions to a linear homogeneous equation, then $a_{n}+b_{n}$ is also an solution.
3. True False If a_{n} is a solution to a linear homogeneous equation, then $c a_{n}$ is also a solution for any constant c.
4. Solve the recurrence relation $a_{n}=5 a_{n-1}-6 a_{n-2}$ with $a_{1}=5, a_{2}=13$.
5. Find a recurrence relation such that $a_{n}=2^{n}-3^{n}$ is a solution to it. (Hint: What would the characteristic polynomial be?)
6. Solve the recurrence relation $a_{n}=3 a_{n-1}+4 a_{n-2}$ with $a_{0}=3$ and $a_{1}=2$.
7. Find a recurrence relation such that $a_{n}=n(-1)^{n}$ is a solution to it.
8. Solve the recurrence relation $a_{n}=4 a_{n-1}-4 a_{n-2}$ with $a_{0}=3$ and $a_{1}=4$.
